On approximating the quasi-arithmetic mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom

Kolmogoroff and Nagumo proved that the quasi-arithmetic means correspond exactly to the decomposable sequences of continuous, symmetric, strictly increasing in each variable and reflexive functions. We replace decomposability and symmetry in this characterization by a generalization of the decomposability. AMS (1991) subject classification: Primary 39B12, 39B22, Secondary 26B35.

متن کامل

The Arithmetic - Harmonic Mean

Consider two sequences generated by ",,+ i Mi"„<hn)hn*\ M'i"„+X,b„), where the a„ and b„ are positive and M and M' are means. The paper discusses the nine processes which arise by restricting the choice of M and M' to the arithmetic, geometric and harmonic means, one case being that used by Archimedes to estimate it. Most of the paper is devoted to the arithmetic-harmonic mean, whose limit is e...

متن کامل

Approximating the minimum cycle mean

We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1) First we show that the algorithmic question is reducible in O(n2) time to the problem of a logarithmic number of min-plus matrix multiplications of n× n-matrices, where n is the...

متن کامل

Quasi - Greedy Triangulations Approximating

This paper settles the following two longstanding open problems: 1. What is the worst-case approximation ratio between the greedy and the minimum weight triangulation? 2. Is there a polynomial time algorithm that always produces a triangulation whose length is within a constant factor from the minimum? The answer to the rst question is that the known (p n) lower bound is tight. The second quest...

متن کامل

Generalizing the Arithmetic Geometric Mean

The paper discusses the asymptotic behavior of generalizations of the Gauss’s arithmetic-geometric mean, associated with the names Meissel (1875) and Borchardt (1876). The "hapless computer experiment" in the title refers to the fact that the author at an earlier stage thought that one had genuine asymptotic formulae but it is now shown that in general "fluctuations" are present. However, no ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2019

ISSN: 1029-242X

DOI: 10.1186/s13660-019-1991-0